
Robot Hardware Abstraction Layer

Special Course

Anders Beck, s021786

Danmarks Tekniske Universitet
Automation - DTU Electrical Engineering
Supervised by Nils A. Andersen
September 8, 2008

Robot hardware abstraction layer 1 Abstract

1 Abstract

The robot control framework, designed at the Institute of Automation, DTU Electri-
cal Engineering is a project that has undergone constant evolution in around 10 years.
Throughout the years the platform has evolved to a flexible and general framework, sup-
porting many robots and configurations. One element has escaped this evolution, the
robot hardware abstraction layer.

This project describes the design and implementation of a flexible robot hardware ab-
straction layer, RHD. RHD is designed to provide robust and flexible core functionalities
such as a global variable database, TCP/IP server and Realtime scheduling. Hardware
interaction is done through an XML configurable plug-in architecture to supply even more
flexibility and future expansibility.

RHD is already thoroughly tested on the AU SMR platform and the KU Life HAKO
autonomous tractor platform, but support for other robots including the AU MMR, iRobot
ATRV-Jr and a plug-in supporting the Stage simulator is in full development.

Anders Billesø Beck (s021786) I

Robot hardware abstraction layer 2 Preface

2 Preface

This project was done as a special course at Automation, DTU Electrical Engineering
and has a intellectual workload of 10 ECTS points. Robots and hardware for testing has
kindly been made avalible by Automation, DTU Electrical Engineering and KU Life.

When reading this report, it is important to note that the main focus has been to create
a full documentation of Robot Hardware Daemon (RHD). In this context, each section of
the report is written to be read individually.

I will like to thank my supervisor Nils A. Andersen for his enthusiasm and very great
sparring when developing, implementing and debugging RHD.

Anders Billesø Beck
s021786

Automation, DTU Electrical Engineering
September 8, 2008

Anders Billesø Beck (s021786) II

Robot hardware abstraction layer CONTENTS

Contents

1 Abstract I

2 Preface II

3 Introduction 1

4 Robot Hardware Daemon, RHD 2

4.1 Core Components . 2

4.1.1 Variable Database . 3

4.1.2 TCP/IP Server . 4

4.1.2.1 Client / Server handshake 5

4.1.2.2 Client / Server dynamic data exchange 6

4.1.2.3 XML Configuration of the server 8

4.1.3 Realtime Scheduler . 8

4.1.3.1 Linux Scheduling . 9

4.1.3.2 RTAI Scheduling . 10

4.1.3.3 Open loop sheduling . 11

4.1.3.4 XML Configuration of the scheduler 11

4.2 Plug-in modules . 12

4.2.1 RHD Plug-in structure . 12

4.2.1.1 Plugin library interface . 12

4.2.1.2 Compiling a plug-in . 13

4.2.1.3 Plug-in XML configuration 13

4.2.2 AuSerial plug-in . 14

4.2.2.1 SMR serial protocol . 14

Anders Billesø Beck (s021786) III

Robot hardware abstraction layer CONTENTS

4.2.2.2 Configuring busses, devices and commands in XML 15

4.2.2.3 Associating database variables to AuSerial commands . . . 17

4.2.2.4 Final notes on the AuSerial plug-in 21

4.2.3 GPS plug-in . 21

4.2.4 Crossbow gyro plug-in . 22

4.2.5 Fibre Optic Gyro plug-in . 23

4.2.6 SMRDSerial plug-in . 24

4.2.7 Hako CAN-bus plug-in . 25

4.3 librhd Client library . 25

4.3.1 Communicating with the RHD server 25

4.3.2 Communicating with the variable database 26

5 Testing on various platforms 28

6 Further development 29

7 Conclusion 30

Appendix A

A Example XML Configuration files A

A.1 RHD configuration XML file for version 1.x A

A.2 RHD configuration XML file for version 2.x D

Anders Billesø Beck (s021786) IV

Robot hardware abstraction layer 3 Introduction

3 Introduction

The Institute of Automation at DTU Electrical Engineering started the construction of
the SMR in 1999. The platform proved to be a flexible and durable platform for robot
development. Approaching the first decade of lifetime, a lot of software has been written
for the robot platform. The SMR platform has founded the base for a robot control
framework, being developed at AU.

In the course of time, many projects has involved controlling other robot platforms, such
as the outdoor robot MMR and the automated HAKO tractor at KU Life. As any other
development process, the expansion of the control system and perception servers has been
continuous, and capabilities has moved from being a specific single-platform solution to
be a general multi-platform framework.

The initial aim of this project, was to review the control structure of the evolutionized
framework, and identify structural elements, that might be leftovers from the single-
platform roots. As my M.Sc thesis project will attempt to add a planning layer on top
of the existing control layer, it is important to have all preceding layers reviewed and
optimized to fit the vision of the framework.

This analysis process turned out to be reasonably short. The robot control software MRC
(previously SMRDEMO) and the perception robot servers had gone through many years
of development and improvement, but one element of the control system had not evolved
from it’s original form: the robot Hardware Abstraction Layer (HAL).

Originally designed for the SMR, the HAL SMRD was designed to be a transparent inter-
face, communicating with serial bus devices and forwarding raw data to clients through
a TCP/IP interface. The design was clever for understanding and development of robot
control systems, but as focus moved towards higher levels of control, it has showed too
simple and most of all too inflexible.

All sensor elements was hard-coded into the SMRD-code, and all TCP/IP communication
followed the serial protocol, used on the packed medium-bandwidth RS-485 bus. The
result was several branches of this HAL existed, the MMRD and HAKOD, but as more
and more new devices did not follow the RS-485 protocol, it was necessary to perform
inflexible and cumbersome wrapping and unwrapping into this protocol.

The result of this, was a list of incompatible branches of SMRD that all needed time
consuming handcoding to change, add or remove any hardware devices on the robots.

The need for a flexible HAL has been recognized for quite some time at AU and it was
obvious for this project to solve this problem and design a configurable, flexible and HAL
for the use in mobile and stationary robot configurations.

Anders Billesø Beck (s021786) 1

Robot hardware abstraction layer 4 Robot Hardware Daemon, RHD

4 Robot Hardware Daemon, RHD

The need for a more flexible realtime hardware interface framework led to the design of
Robot Hardware Daemon, RHD. Instead of being a simple synchronized data mirror as
SMRD, RHD is intended to be a realtime synchronized variable oriented database. The
variable database orientation provides great flexibility, but it also helps to enforce a clean
cut interface between the various specific hardware formats and a user-manageable API.

As RHD is replacing the primary timebase in the AU robot control environment, a lot
of effort was used to analyze the behavior of different scheduling mechanisms in Linux,
and to create a robust, lightweight and flexible realtime-safe implementation. There is a
balance of keeping compatibility to a traditional desktop Linux distribution and meeting
the requirement of hard realtime performance. As described in the scheduler section, both
has been achieved.

It is important to recognize, that RHD is a synchronized variable database, but it is running
at a fixed samplerate, that defines how often the database snapshot is synchronized and
how often the periodic call to the hardware drivers are executed.

RHD is build upon a set of Core components, and a range of specific Hardware Abstraction
Layer plug-ins. The core components create the foundation of variable database, TCP/IP
server and the realtime-sheduler. Plug-ins create the support of hardware devices, by
managing hardware I/O, pre-processing and database interface.

All setup of RHD is based on a XML configuration file, that contains the needed setup
parameters for all modules in RHD. To keep as much flexibility as possible, the intension
is to place as few ”magic” variables compiled into the code as possible. The line between
a over- and under-configurable system is thin, and the design-decision is only to place
information in the configuration file, that can/will change on different robot types. Specific
static hardware handling is coded directly into the plug-in, and as calibration does not
belong in a HAL, it is left for the client. Following these simple guidelines, all a plug-in
must do, is to initialize the hardware and transfer data between the readable variables in
the database.

To allow easy development of client programs, RHD is supplied with a static C client
library: librhd.

4.1 Core Components

The framework of RHD is based on it’s three core components: the database, the server
and the realtime scheduler.

Each component is designed as an individual element, that can be used for other purposes,
but it is required and compiled into RHD.

Anders Billesø Beck (s021786) 2

Robot hardware abstraction layer 4.1 Core Components

4.1.1 Variable Database

The variable database defines the functionality of RHD. Upon initialization, all plug-in
modules create their needed I/O variables, and finally the database is locked when going
into soft/hard realtime.

The database itself, are based upon a symbol table and a data area. The symbol table
defines the static information regarding the variables and bookkeeping information. The
data area, contains the dynamic information, the actual data and it’s timestamp. The
needed memory is dynamically allocated, when variables are created. Figure 1 below,
show the internal structure of the variable database and the association between symbol
table and data area.

symTableElement[n]

int32 t ∗data

Pointer to the associated data area

int32 t length

char name[MAXNAMELEN+1]

uint8 t updated

struct timeval ∗timestamp

double ∗inputVar

symTableElement[n+1]

Number of data elements

Name of the variable

Bookkeeping, is the variable updated

Pointer to the variable timestamp

double pointer, used in client by MRC

struct timeval
Timestamp of last update

time t tv sec

suseconds t tv usec

Variable data area

int32 t data[0]

int32 t data[1]

int32 t data[length−1]

struct timeval

-

-

Figure 1: Structural overview of an element in the variable database

Note, that a standard variable size of a 32-bit signed integer is selected. This decision
is made, to keep variables ”large enough” for most future applications, and the fact that
memory and bandwidth is not a dramatic issue on most modern platforms.

Some discussion has concerned to include a type to the variable database, as it might
seem inefficient to represent text strings in 32-bit integers. A future enhancement of RHD
might supply the possibility of using other integer sizes, but so far the design decision is
to keep it simple with the highest flexibility.

Bidirectionality is obtained by using two separate symbol tables: a read and a write table.
Data read from sensors are fed into the read-table, and data from the client is received in
the write table.

Anders Billesø Beck (s021786) 3

Robot hardware abstraction layer 4.1 Core Components

Each variable is supplied with a ”updated” flag (see fig 1). The flag is used to implement
reactions to updated variables, and to determine what data should be exchanged with the
client.

There might always be a need to know the exact time a variable was updated, so all
variables has a timestamp, that is set, every time a variable is updated. This makes
it possible to control timing with a much higher resolution than the fundamental RHD
scheduler period.

The API is defined in database.h. This API overview is not intended as a programming
reference, but just to give a feel of, how the database is interfaced.

Variable creation is done by the plug-ins using the function below:

int createVariable (char dir, char len, char ∗name) Add a variable array to the variable pool

The direction, dir, is either the ’r’ og ’w’ character, that determines in which symbol
table the variable is created. len assigns the number of elements in the variable array,
and the name parameter is a pointer to a text string, containing the desired name of the
variable. CreateVariable returns the id number of the variable, that is used to address
the data, when performing I/O. When initialization is completed, the database is locked
in soft-realtime-mode, and no further variables can be created.

Interfacing the variables are done through the following functions:

int setVariable (int id , int index, int value) Update a array in the data pool

int setArray (int id , int length, int ∗array) Update a array in the data pool

int setVariable (int id , int index, int value) Get a read variable from the data pool

int getWriteArray (int id, int index, int ∗array) Get a read variable from the data pool

int getReadVariable (int id, int index) Get a read variable from the data pool

int getReadArray (int id, int index, int ∗array) Get a read array from the data pool

int isUpdated (char dir, int id) Check if a variable is updated

Using this simple API, data can be transferred into the read database and out from the
read and write database. The id parameter is the variable id, that is returned when the
variable is created, and index is the array-index in the database. Check if variables are
updated is performed through the isUpdated() function.

Other functions, that can be found in the RHD documentation, give the possibility of
interfacing the symboltables directly, but their use is highly discouraged. The API above
provide semaphore and boundary projection, and result in more safe and readable code.

4.1.2 TCP/IP Server

After some consideration around shared memory and direct library interface, it was decided
to use TCP/IP sockets as interface for RHD. Socket based communication provides the best

Anders Billesø Beck (s021786) 4

Robot hardware abstraction layer 4.1 Core Components

independence of architecture and is a closer coupling to the previous server-infrastructure.
The main argument for the ”low level” interfaces is speed and efficiency. However, as
the data-throughput of RHD is modest, compared to the capabilities of most modern
platforms, the effort of changing infrastructure and the loss of flexibility, was not worth it.

When designing the database, the primary focus was to create a layout, that is easily
synchronized through a data-interface. That led to the distinction of static data in symbol
table, and dynamic data in a data-table. When clients connect to RHD, an initial hand-
shake is performed where the symboltables are transmitted. After the handshake, only
data-table data is exchanged.

Situations can occour, when multiple clients attempt to connect to RHD and control the
robot, without realizing the conflict. To avoid this issue, RHD only allow one client to
perform write operations, but multiple clients as ”readers”. This is determined by the
handshake.

When designing well-researched elements as communication, it is rarely a good idea to
spend too much time inventing new and genius protocols, instead of using well tested and
defined ones. In this case however, it was a strong desire to make the communication
as simple as possible, as close to the database architecture as possible and using as little
overhead as possible. The resulting protocol is basically a binary transfer of the database
contents, wrapped in a minimum of control variables.

4.1.2.1 Client / Server handshake

After a client has connected to the RHD server, the client initiates the handshake by
requesting either read or write permission. This check-in is done by sending the 8-bit
character ’r’ or ’w’, as shown on figure 2.

Client check-in package: char ’w’ char ’r’or

Figure 2: Client initial check-in in RHD protocol

When the server receive a check-in from a new client, it will respond by transferring the
symboltables from the database. As it is defined in the client structure of RHD, that only
one client can have write permission, the response from the server. When write access is
requested and write access is available, RHD transmits both the write-symboltable and
the read-symbol table. If only read-access is requested or write access is occupied, RHD
respond by only sending the read-symboltable. Figure below 3 show the data-structure of
the transmission.

Anders Billesø Beck (s021786) 5

Robot hardware abstraction layer 4.1 Core Components

Read-table are always transmitted, unless too many clients are connected

Server Response:

If write access is requested and allowed write-table is transmitted

char ’w’ int32 t wTableLen ...wSymtableElement[0] wSymtableElement[wTableLen-1]

char ’r’ int32 t rTableLen ... rSymtableElement[rTableLen-1]rSymtableElement[0]

Figure 3: Server symboltable response to client checkin in RHD protocol

The protocol structure is simple. Initially a character identifies the following package as the
read- or write-symboltable. Then the number of symboltable elements is transmitted in a
32-bit integer. Finally the symboltable elements is transferred in binary format (multi-byte
values are transmitted in network-byteorder). When both symboltables are transmitted,
they are simply transmitted sequentially. If more than the defined number of clients tries
to connect, RHD simply closes the connection.

As the symbol table contain a lot of system specific pointers, the client completes the
handshake by allocating the needed memory for the data-section and re-create the data-
area pointers. After this procedure, each new RHD client has a complete copy of the
relevant variable database structure.

4.1.2.2 Client / Server dynamic data exchange

When a client handshake is completed, RHD only need to transmit the data-area from
the variable database, to keep the client and server synchronized. RHD is also working as
the primary sheduler for realtime robot control software, such as MRC. This is an extra
concern, when designing the data-exchange.

It is important to notice, that despite my best effort, no network protocol is better than
the interface it is running on. If soft/(hard) realtime behavior is expected, the only safe
way is a local loop-back connection. A wired network interface might also give somewhat
predictable and fast response, but do not expect to maintain reliable or stable operation
through a wireless network.

The basic consideration of the data exchange protocol is, that latency in the TCP/IP
protocol, is just as much caused by the overhead of small packages than the actual data
transfer. This lead to a protocol, where only one package is sent in each direction in one
server period.

Figure 4 below, show a typical period, for a RHD server with two connected clients.

Anders Billesø Beck (s021786) 6

Robot hardware abstraction layer 4.1 Core Components

Period n

Period n+1

Motor encoder

Hardware interface

V
ariabeldatabase

Linesensor

IR sensor

GPS

Linux
T

C
P

/IP
B

uffer

Client 1 data (Reader = empty package)

Client 0 data (Writer)

Server Data for Client 0

Data for Client 1

Gyroscope

TCP/IP Network interface

Motor speed

Figure 4: Hardware and Client - Server data traffic in one typical RHD period

When a client are done with it’s periodic processing, it transmits a data package, containing
all the variables that should be updated to the RHD server. This also counts as a ’ready’
sign for the client to RHD. If a client is connected as a reader, this package should be empty,
otherwise it is ignored. When the server receive the periodic tick from the scheduler, it
start processing the client data-packages from its TCP/IP buffer and update the incoming
variables in the database. When that is finished, the server transmits a datapackage, only
to the ’ready’ clients, containing the variables that should be updated in the client.

The package format is identical for both directions and is shown on figure 5

int32 t nVariables

0

1

nVariables-1

int32 t variableId struct timeval int32 t data[0] ... int32 t data[len−1]

int32 t variableId struct timeval int32 t data[0] ... int32 t data[len−1]

int32 t variableId struct timeval int32 t data[0] ... int32 t data[len−1]

Figure 5: RHD Synchronization data package

The package header, is a 32-bit integer, determining how many elements there are in the
payload. If a read-client transmits the datapackage, this integer must be zero (0). Then the
payload follow, starting with the database ID of the variable beeing transmitted, followed
by timestamp and data for the variable. It is easy to recognize, that the last part of each
payload element, is a direct copy of the database data-area for each variable. The only
processing performed on the data, is that all variables are converted between host and
network byte-order at each end of the TCP/IP socket.

Anders Billesø Beck (s021786) 7

Robot hardware abstraction layer 4.1 Core Components

Using this, relatively simple protocol, an informative variable database is easily distributed
to clients, and variable data is synchronized with a minimum of overhead.

4.1.2.3 XML Configuration of the server

The server XML configuration tag can be seen below:

<s e r v e r>
<port value=”24902 ”/>
<c l i e n t s number=”10 ”/>

</ s e r v e r>

The server can be configured to run on any TCP/IP port, but default is 24902. This
is simply the incremental port from port 24901, used by SMRD. Also the number of
accepted clients can be configured. The limit is theoretically system memory, but keep
your systems capability in mind, when setting this value. The overhead of having more
read-clients connected is, however, quite small. It is basically set by the resources used by
the TCP/IP stack, to transmit variables to the extra receiver.

4.1.3 Realtime Scheduler

Besides being a networked variable database, RHD is also the main timebase for the
low level robot control applications, such as MRC. The AU robot control platform is in
strong growth, and is constantly expanding the range of supported robots. Some of these
platforms is clearly in the heavy sector, that makes fault tolerance and especially realtime
performance critical.

Hard realtime performance, is not an issue that is generically supported by the Linux
kernel, as there is no support for kernel preemption. In different projects, as RTAI and
RT-Linux, this is solved by patching the kernel with a second scheduler, that allow tasks
to work in kernel priority levels and full kernel preemption.

Timing is generally a platform specific issue, is solved in many different ways. X86 plat-
forms use a range of timers, such as the old APIC-8259 (Advanced Programmable Interrupt
Controller) timing IC to the new HPET (High Precision Event Timer), found on modern
platforms. This makes an universal implementation of a realtime environment difficult.
Our RT-implementation of choice is the RTAI (RealTime Application Interface) patches.
Despite that RTAI does support a range of architechtures, installation can be cumbersome
or impossible on some platforms.

Linux itself, provide some means of achieving soft realtime performance. RHD would be
most flexible, if it could operate satisfactory on a standard Linux distribution and with
enhanced stability using the RTAI sheduler. RHD is capable of exactly that.

Anders Billesø Beck (s021786) 8

Robot hardware abstraction layer 4.1 Core Components

4.1.3.1 Linux Scheduling

To obtain best possible realtime performance in Linux, all realtime threads must be raised
in priority. The default priority of the realtime threads in RHD is one below the maximum
allowable in userspace. Furthermore, when initialization is completed, threads must run
with a locked heap, to prevent memory allocation.

The Linux kernel itself is not preemptive, so all scheduling happen in the period of the
scheduler, the so-called jiffy. Previously, this frequency was normally set to 100Hz, but
seemingly the default of the vanilla kernel is now 250 Hz. This create a period of 4 ms
and make it impossible to obtain the 10 ms control cycle.

Figure 6 below, show the period times of a Linux Itimer interrupt, set at 10 ms and 40 ms
target periods on the SMR X86 VIA platform and on a Atmel AVR32 Linux evaluation
board.

Figure 6: Scheduler periods with 10 and 40 ms targets on a 250 Hz kernel scheduling
frequency

When trying to time a period, that is not divisible with the scheduler period, the timer
will simply jump between the two closest scheduler ticks and thus create an accurate
average timing period. This might be resonable, if the timer period is much larger than
the scheduler period, but for realtime robot control it is highly undesired. If the period is
dividable with the scheduler period, performance is very good. Figure 7 show a closeup of
the second part of figure 6.

Anders Billesø Beck (s021786) 9

Robot hardware abstraction layer 4.1 Core Components

Figure 7: Closeup of samples from 39.8 to 40.2 ms at 250 Hz scheduler frequency and 40
ms timer target

Data to figure 7 is logged with a 40 µs interval. If samples from 39.96 - 40.04 ms is
summed, it yields a total of 99.90 % of the samples, which is quite good performance.

When compiling the 2.6 Linux kernel, it is possible to set the scheduler frequency for 100,
250, 300 and 1000 Hz. To run RHD using the Linux scheduler, the timer loop period
must be carefully selected as a multipla of the Linux sheduling period. It is strongly
recommended to use a kernel compiled for 1000 Hz scheduling frequency, for greatest
flexibility and resolution.

The RHD scheduler has two implementations of Linux scheduling. The recommended is
based on the Interval timer interrupt, Itimer. The main thread is suspended by a call to
the pause() function, and restarted when the itimer interrupt is caught. Alternatively,
an algorithm using the usleep() function is available, but test has shown it to be less
reliable.

SMRD solved the scheduling problem by linking scheduling to the serial port. In each
period, a fixed number of bytes was transmitted, and processing is resumed when the
serial port buffer was cleared. Waiting for the serial port, placed the thread in I/O-wait
condition, instead of suspending it to the scheduler, making it independent of the schedul-
ing period. The principle is good, but RHD should be a flexible framework, independent
of hardware elements, so this method was not viable. This performance can be obtained
through the RTAI framework.

4.1.3.2 RTAI Scheduling

RTAI supply two ways of implementing realtime applications. Traditional RTAI is only for
writing kernel modules, but a new module LXRT support realtime threads in user space.
Kernel space is a thing, that generally should be avoided if at all possible, and as LXRT
supply the needed functionality, this is the implementation of choice.

When a realtime thread is created through LXRT, the LXRT kernel module creates a kernel
realtime service-thread, to handle all realtime requests from userspace. This provides the

Anders Billesø Beck (s021786) 10

Robot hardware abstraction layer 4.1 Core Components

possibility of hard realtime from userspace, but it does not solve the flexibility issue of
being able to compile and work with and without RTAI seamlessly.

In RHD this issue is solved by communication through realtime FIFO’s. The scheduler
spawn a separate hard realtime thread, who simply perform a periodic wait-loop. When
each period expires, it transmit a timestamp through a realtime FIFO channel. The usual
main thread performs a simple read on the FIFO, that make it go into I/O wait state
(as done by SMRD). That never release the main thread to the Linux scheduler, but wait
until data is written through the FIFO.

RHD can be compiled on a enviroment supporting RTAI, by supplying the command make
RTAI. When the compile environment is properly setup at the automation servers, this will
properly be changed to make NORTAI, to compile without RTAI, as RTAI scheduling should
be used whenever possible.

4.1.3.3 Open loop sheduling

In some rare cases, it might be useful to be able to control the RHD timer period from
one or more plug-ins. The development of RHD has made the previous robot simulators
useless, as they emulate SMRD communication. The solution to this, is to write a plug-in
for RHD, that uses the Stage simulator1. To be able to control timing from the Stage
plugin, the RHD scheduler must be deactivated. To facilitate this request, the freerunning
mode was designed.

Using freerunning mode in normal RHD operation could result in very high system load
and invalid data from plug-ins so be careful with this option.

4.1.3.4 XML Configuration of the scheduler

The scheduler is configured by the XML tag below:

<shedu l e r>
<per iod value=”10000 ”/>< !−−in usec−−>
<type value=” i t i m e r ”/>< !−−”us l e ep ” , ” i t i m e r ” , ”LXRT” , ” f r e e runn ing ” −−>

</ shedu l e r>

The timing period is defined in µs. Scheduling can be performed using four different
algorithms, set by the keywords: usleep, itimer, LXRT or RTAI and freerunning. Using
usleep is generally deprecated, but itimer show quite good performance, if the timer
period is fixed to a multiple of the Linux scheduler period. RTAI can be enabled both
the keywords RTAI or LXRT. If RHD is compiled without RTAI support, it will default to
itimer scheduling, if it is set to use RTAI. When using the freerunning, RHD periods
will only be limited by plug-in process time and server operation.

1Part of the Player/Stage project (http://playerstage.sourceforge.net)

Anders Billesø Beck (s021786) 11

Robot hardware abstraction layer 4.2 Plug-in modules

4.2 Plug-in modules

The RHD core framework itself, does not supply possibilities for hardware interaction.
Specific drivers are implemented through a plug-in structure.

As drivers are included in operating systems, the principle of drivers in RHD is to ”include
em’ all, use what you need”. In this way, it is avoided that some branches of RHD start
drifting away, as MMRD and HAKOD is specific, but incompatible, implementations of
SMRD.

Plug-ins have the possibility to interface the variable database for client communication,
but is responsible for interfacing and parsing data to and from hardware devices.

4.2.1 RHD Plug-in structure

For future developers, the most important issue, is to be able to write new hardware
plug-ins for RHD. The procedure is documented in this section.

Up to version 1.x (current release version), RHD has not implemented hardware drivers as
plug-ins, but as C-files that were compiled into RHD. This version also implement a unified
driver architecture, but calls to the driver is done by explicit function calls in the RHD
core thread. Work has now started on a version 2.0, that will introduce an actual plug-in
structure, using Linux dynamically loaded libraries. Despite the plug-in architecture is in
development, the interface is tested and final.

4.2.1.1 Plugin library interface

The RHD plug-in loader expect each plug-in to supply three functions:

Initialization The initialization function take a string, that point to the XML configu-
ration file as parameter. Initialization is performed, before RHD is switched to soft
realtime, so memory allocation is allowed. Most plug-ins use this function to parse
the XML configuration, allocate memory, open I/O ports, and spawn asynchronous
receive threads. If any of these operations fail, the initialization call must return
a value < 0. The initialization function is mandatory, before RHD will accept the
plug-in.

Periodic function The periodic function is called at each scheduler period. The function
takes an integer as parameter, that is the number of scheduler ticks, since RHD start.
This counter will overflow, at some point. The purpose of the periodic function is to
perform write calls and other periodic maintenance. It is important, that execution
of this function is as quick as possible, as the all periodic calls are performed from the
main thread. No blocking reads or image processing must be done in this call. Write-
calls are buffered by the Linux operating system and are allowed. This function is
optional and can be omitted by i.e. read-only plug-ins.

Anders Billesø Beck (s021786) 12

Robot hardware abstraction layer 4.2 Plug-in modules

Shutdown The shutdown function is executed, when RHD catches a kill signal. It can
be used to close ports and end threads properly. The shutdown function is optional.

To enable RHD to load the plug-in properly, the header file must hold the following
function declarations:

extern ”C” int initXML (char ∗ xmlf i lename) ;
extern ”C” int p e r i o d i c (int t i c k) ;
extern ”C” int shutdown (void) ;

Remember, that the initXML() function is mandatory, the others are optional and will be
omitted, if they are not present in the header.

4.2.1.2 Compiling a plug-in

A plug-in should be complied as a Linux shared library. This is done by compiling each
file, desired to be within the library into .o files, and finally constructing the library. It is
important, that the library file is named lib[libname].so.[version].

The listing below, show an example of how to compile a shared library on Linux comman-
dline:

gcc −fPIC −O2 −c −Wall p lug in . c
gcc −fPIC −O2 −c −Wall ext ra . c
gcc −shared −Wl,−soname , l ibmyplug in . so . 1 −o l ibmyplug in . so . 1 p lug in . o extra . o − l c

Note, that each .c file is compiled with the -fPIC parameter, that creates Placement
Interdependent Code.

The RHD SVN package contains a plugins folder. Within this folder, all plug-ins have
their own folder, that contain an individual makefile. The makefile makes the plug-in
into a shared library and moves the resulting binary to the project bin/rhdplugin folder,
that holds all rhd plug-ins. When adding a plug-in to RHD, just copy the makefile from
another plug-in and adjust it to the new plug-in.

Many plug-ins use some shared functions, found in the globalfunc.c file. Plug-ins are
loaded into RHD, to acquire access to all functions within RHD, including these functions.
globalfunc.c contains functions to perform a secure read/write to a Linux filepointer and
to set serial-port parameters.

4.2.1.3 Plug-in XML configuration

The RHD configuration file, normally rhdconfig.xml, has a <plugins> tag section. Before
RHD is able to load a plug-in, it must have an entry, that follow the template:

<p lug in s basepath=”rhdplug in / ”>
< [p lug in name] enable=”true ” l i b=” l i b [p lug in name] . so . 1 ” c r i t i c a l=”true ”>

<plug in c o n f i g tag 1 . . . />
<plug in c o n f i g tag 2 . . . />
. . .

Anders Billesø Beck (s021786) 13

Robot hardware abstraction layer 4.2 Plug-in modules

</ [p lug in name]>
</ p lug in s>

The tag identifier should be the plugin name, illustrated by [plugin name] on the listing. To
be able to easily enable/disable the plugin, it must have an enabled parameter, that sets
whether the plug-in will be loaded or not. A lib parameter sets the filename of the plug-
in dynamically loadable library. This should normally be named lib[plugin name].so.1,
if it is version 1, or .so.2 for version 2. It is not recommended to do too much version
management with compiled plug-ins. The final template parameter is critical. It is
an optional parameter, but if it is set to true, RHD will exit if the initialization function
returns > 0. This is useful, if a sensor critical to the operation of a robot. It will ensure that
the robot will not operate without this sensor properly initialized. If this tag is omitted
or set to false, RHD will run if initialization fails, but not do any further interaction with
the plug-in.

Configuration of the plug-in is done by adding child-tags, between the [plugin name] tags.
It is also possible to add further parameters to the [plugin name] tag, but is discouraged.

4.2.2 AuSerial plug-in

One of the main motivations for developing RHD, was that the RS485 serial bus interface
in SMRD was very inflexible. Adding new devices to the bus, or a simple reconfiguration,
required a quite large change in both server and client code. A task, tedious and difficult
for the maintainer and almost impossible for students. The AuSerial plug-in is providing
a fully XML-configurable interface to the serial protocol, used on the SMR RS-485 bus.

AuSerial is the most complex plug-in for RHD, but also the most flexible. Unlike the other
plug-ins, most of the AuSerial code is used on initialization. The periodic ”running” code,
is optimized to be as simple and efficient as possible, thus providing greatest functionality.

4.2.2.1 SMR serial protocol

The serial protocol, used on the SMR sensors, are developed by Per Koch Jensen in his
thesis work in 2000. Some insight of the protocol structure is necessary to understand
and use the configuration of AuSerial. The protocol is an 8-bit package oriented protocol,
based on device ID’s and commands. The package format is shown on figure 8 below:

len CMD data[0] ...ID data[1] data[len−3] data[len−2]

Figure 8: Datapackage in the SMR serial format (8-bit data)

Each package is initiated by a length byte. It determines the number of following bytes,
to a maximum of 32 bytes. The following byte is the command and id byte. The least
significant hex value is the device id, allowing a adress space of 16 devices. Id 0 is reserved
for broadcast (but currently not used). The most significant hex value is the command,

Anders Billesø Beck (s021786) 14

Robot hardware abstraction layer 4.2 Plug-in modules

also allowing a command space of 16 commands for each device. Command 0xF (16) is
reserved for the extended command space, where the actual command is included in the
following data byte. This adds 255 commands to the command space. After the id and
command byte follow 0-31 payload bytes. It is allowed to send a command without any
payload and there are no formal way of organizing data in the payload.

The communication on the SMR bus is full duplex but is working as master-slave. The
computer is running the master bus and each sensor is driving the slave bus, when re-
sponding to a master request. To avoid collisions, no slave must transmit without being
requested by the master. Another source of collisions is, if the master requests data from
a new slave, before the previous finished its response. This is normally avoided by having
the master emitting 0’es on the bus, that matches the number of bytes returned from a
request.

The protocol itself, does not provide any means of fail safety. The most common problem
is, that it might loose synchronization, and see command or data bytes as length bytes.
This could leave a device non operational. This problem is solved by emitting 32 0’es in
the end of each timer period. This would fill the receive buffer of any device that is out of
sync. When sync is recovered, the 0’es would just be a length of zero bytes, and keep the
device ready for a real package.

4.2.2.2 Configuring busses, devices and commands in XML

AuSerial supplies a fully configurable interface, that allow to several serial ports, each
with 16 devices and each device with 16 commands. Configuration is placed within the
<auserial> XML tag, and is quite lengthy for a full SMR configuration, with all functions
enabled.

The first level of the configuration, is assign a serial port, represented by the <bus> tag.
Configuration of a standard serial port is shown below:

<a u s e r i a l enable=”true ” l i b=” l i b a u s e r i a l . so . 1 ” c r i t i c a l=”true ”>
<bus name=”RS485 ” dev=”/dev/ ttyS0 ” baudrate=”115200 ” h o l d o f f=”6 ”>

[Bus dev i c e s c o n f i g u r a t i o n here]
</bus>
<bus . . .

</ a u s e r i a l>

Configuration of the plug-in is explained in section 4.2.1.3, and will not be discussed. Each
<bus></bus> set define a serial bus. A bus configured by a name parameter, mostly for
description. The dev sets the Linux device for the serial port. Communication speed is
set by the baudrate parameter. The transmission capacity of the bus is calculated from the
scheduler period and transmission speed. For 115.2 kBps, it is 115 byte pr 10 ms.

The holdoff parameter sets how many bytes should be reserved of the bus capacity, for
”idle” time. This parameter is created, to ensure that all data traffic is cleared on the
bus, in each period. So far RHD only issues a warning, if holdoff is violated, but it is
discussed if data should be discarded. There is no safe solution to the problem so far, as
both overrunning the bus or discarding possibly critical data is highly unsafe.

Anders Billesø Beck (s021786) 15

Robot hardware abstraction layer 4.2 Plug-in modules

Below the <bus> tag, it is possible to define 16 devices. A device resemble a physical sensor
on the bus, and must have an unique id. The XML listing below show the configuration
of a SMR motor controller device:

<a u s e r i a l enable=”true ” l i b=” l i b a u s e r i a l . so . 1 ” c r i t i c a l=”true ”>
<bus name=”RS485 ” dev=”/dev/ ttyS0 ” baudrate=”115200 ” h o l d o f f=”6 ”>

< !−− Le f t motor module −−>
<dev i ce name=”motorl ” id=”1 ”>

[Command c o n f i g u r a t i o n here]
</ dev i ce>
<dev i ce . . .

</bus>
</ a u s e r i a l>

A device is only defined by two parameters, a name, used for description, and id, defining
it’s the bus id. The id value must be assigned in HEX values 0-F. The last protocol
specific tag, is the commands, assigned to each device. The standard commands used for
a motor controller is shown on the XML listing below:

<a u s e r i a l enable=”true ” l i b=” l i b a u s e r i a l . so . 1 ” c r i t i c a l=”true ”>
<bus name=”RS485 ” dev=”/dev/ ttyS0 ” baudrate=”115200 ” h o l d o f f=”6 ”>

< !−− Le f t motor module −−>
<dev i ce name=”motorl ” id=”1 ”>

<cmd name=” r e s e t ” type=”reques t ” cmd=”0 ”/>
<cmd name=”speed ” type=”reques t ” cmd=”1 ”>

[Data c o n f i g u r a t i o n here]
</cmd>
<cmd name=”enclTx ” type=” p o l l ” cmd=”2 ” pad=”5 ” per iod=”1 ” o f f s e t=”0 ”/>
<cmd name=”enclRx ” type=”reques t ” cmd=”A”>

[Data c o n f i g u r a t i o n here]
</cmd>

</ dev i ce>
</bus>

</ a u s e r i a l>

The first defined command, is the reset command. There is no data payload with the reset
command, and the tag is terminated with />. The <cmd> tag takes a range of parame-
ters. The name is used for description. The type parameter accept two values: poll and
request. Poll commands, is periodically transmitted by RHD but request commands are
only transmitted when associated variables are updated from a RHD client (Configuring
data variables are described in section 4.2.2.3). The device command number is set by the
cmd parameter. So far, the extended command space is not supported by the protocol, but
must be done manually, by setting cmd=”F” and assigning the data payload to represent
the extended command value. The command parameter must be assigned in HEX values
0-F.

Commands, that initiate returning of data from the devices, must have an appropriate
pad parameter. This value assigns, how many 0’s that should be written to the bus, while
waiting for the device to respond. Normally this value is set to the length of the response,
but some sensors might have some set-up time, before they answer and need a few bytes
of extra padding. Test this carefully, before deciding a value.

Poll commands have the option of two extra parameters: period and offset . They are used
to distribute bus traffic, if poll commands is not needed at every period. A good example is

Anders Billesø Beck (s021786) 16

Robot hardware abstraction layer 4.2 Plug-in modules

the SMR IR sensor modules, where data is updated at 6 Hz. There is no need for sampling
them at 100 Hz. period is used to set how many scheduler periods there is between each
poll. To avoid all commands being polled at one given period, the parameter offset is used
to move the poll a number of scheduler periods, within it’s own period. offset should be
less than period.

The motor module is a good example of, how problems can emerge, when there is no fixed
standard for using a protocol. Poll for encoder values has the command number 0x2, but
return values in a package with command number 0xA. This is fixed in the example by
creating entries for a poll-command to request values, and a request-command to receive
values. Messy, but it works.

A plea to all sensor designers, please let sensors return the same command id
as the requesting command id.

Using the XML formatting and examples, described in this section, it is possible to create
robots that has any configuration of busses and devices, as long as they follow the SMR
serial protocol. Adding an extra linesensor or creating a robot with 10 motor controllers,
is just a matter of configuring the sensors with the right id’s and writing the AuSerial
configuration. Linking the commands to RHD variable data is discussed in the following
section

4.2.2.3 Associating database variables to AuSerial commands

When a sensor structure is defined in the AuSerial configuration, the real challenge is to
map payload data to RHD database variables. The SMR serial protocol is 8-bit oriented,
but sensors use a wide range of payload encondings and representing data in 1-bit, 8-bit,
10-bit and 16-bit formats.

To allow full support of existing sensor devices, and allow full flexibility of the SMR serial
protocol, it was necessary to create a method to map each bit of variable to bus data and
back from bus data to variable data.

The principle is, that every command can write data to the serial bus, and read data that
is returned. This can be directly linked to a number of RHD database read and write
variables.

As the RHD variable database is array oriented, it is possible to create arrays and variables.
A variable is basically an array with one element. For the sake of simpliticy, the first
example will show the configuration of a variable.

Variable mapping (single element array)

This XML listing show the variable configuration of the return data from a motor controller
(without the preceeding tags):
<cmd type=”reques t ” name=”enclRx ” cmd=”A”>

<v a r i a b l e name=”enc l ” d i r=”r ” byte0=”1 ” byte1=”0 ”/>
<v a r i a b l e name=”pwml” d i r=”r ” byte0=”3 ”/>

</cmd>

Anders Billesø Beck (s021786) 17

Robot hardware abstraction layer 4.2 Plug-in modules

In the example ”enclRx” create two variables, ”encl” and ”pwml”. Both variables have the
parameter dir set to ”r”, meaning that they are read-variables. The interesting part, is
the byte-mapping. The parameter byte0..byte4, assign the 4 bytes in the 32-bit database
variable to the 0-31 byte of serial bus payload data. Figure 9 show how the payload bytes
are mapped to the variables in the enclRx example.

encl

pwml
Encoder data package

Variables
5 0xA1 0 1 2 3

3 012

3 012
8162432Bit

byte0="1"
byte1="0"

Payload bytes

byte0="1"

Figure 9: Mapping of serial bus payload bytes to RHD variable bytes for motor controller
encoder values

Array mapping

Often multiple data values are associated, such as the 8 readings of the SMR linesensors.
To allow easiest access to these values, the RHD variable database is array-oriented. In
the same way as the encoder example before, serial payload data can also be mapped to
arrays. Below is an example of how to map the 8 linesensor mesurements to an 8-element
array

<cmd type=” p o l l ” name=”va lues ” cmd=”1 ” pad=”10 ”>
<array name=” l i n e s e n s o r ” d i r=”r ”>

<element byte0=”0 ”/>
<element byte0=”1 ”/>
<element byte0=”2 ”/>
<element byte0=”3 ”/>
<element byte0=”4 ”/>
<element byte0=”5 ”/>
<element byte0=”6 ”/>
<element byte0=”7 ”/>

</ array>
</cmd>

The plugin automatically create an database variable with an array size, that matches the
number of element tags. Each array element has byte0 mapped to 8 consecutive bytes of
the payload, as illustrated on figure 10.

Anders Billesø Beck (s021786) 18

Robot hardware abstraction layer 4.2 Plug-in modules

linesensor[0]

Linesensor data package Array elements

9 0x17 0 1 2 3

3 012

3 012
8162432Bit

byte0="1"

byte0="0"

Payload bytes
byte0="2"

4 5 6 7

3 012

3 012

3 012

3 012

3 012

3 012

byte0="3"

byte0="4"

byte0="5"

byte0="6"

byte0="7"

linesensor[1]

linesensor[2]

linesensor[3]

linesensor[5]

linesensor[4]

linesensor[6]

linesensor[7]

Figure 10: Mapping of several array elements to a linesensor serial bus package

Bit-mapping

The final mapping method is individual bit mapping. As the transfer capacity of the serial
bus is limited, variable data is often packed bitwise into the payload. A good example of
this, is the SMR power supply module, that has 5 10-bit ADC mesurements and 6 1-bit
boolean values mapped into 6 payload bytes. Figure 11 illustrate, how the vaulues of
different resolution are packed into the 8-bit serial format.

f e d c b a A A B BCCDDEE A AA AA AA A B BB BB BB B CCCCCCCC DDDDDDDD EEE EE EE E

1-bit digital 2 MSB of 10-bit analog 8 LSB of 10-bit analog

Figure 11: Payload package from power module, boolean digital values a-f and 10-bit
analog measurements A-E are packaged into 8-bit blocks

To resolve payloads like this, into variables, it is nesseary to be able to map each individual
bit of the payload into a specific bit of the database variable. Bit mapping is done by the
parameter b0 − b31, that assigns bit 0 to 31 of the database variable to the bit assigned in
the parameter value. The syntax for the bit-map parameter is bN=”bit,byte”, where bit is
the addressed payload bit and byte is the addressed payload byte. An example of the full
mapping of the power module payload is shown in the XML listing below:

<cmd type=” p o l l ” name=”s t a t u s ” cmd=”1 ” pad=”10 ”>
<array name=” d i g i t a l ” d i r=”r ”>

<element b0=”2 ,0 ”/> < !−− a −−>
<element b0=”3 ,0 ”/> < !−− b −−>
<element b0=”4 ,0 ”/> < !−− c −−>
<element b0=”5 ,0 ”/> < !−− d −−>
<element b0=”6 ,0 ”/> < !−− e −−>
<element b0=”7 ,0 ”/> < !−− f −−>

</ array>
<array name=”analog ” d i r=”r ”>

<element byte0=”2 ” b8=”0 ,0 ” b9=”1 ,0 ”/> < !−− A −−>
<element byte0=”3 ” b8=”6 ,1 ” b9=”7 ,1 ”/> < !−− B −−>
<element byte0=”4 ” b8=”4 ,1 ” b9=”5 ,1 ”/> < !−− C −−>

Anders Billesø Beck (s021786) 19

Robot hardware abstraction layer 4.2 Plug-in modules

<element byte0=”5 ” b8=”2 ,1 ” b9=”3 ,1 ”/> < !−− D −−>
<element byte0=”6 ” b8=”0 ,1 ” b9=”1 ,1 ”/> < !−− E −−>

</ array>
</cmd>

Note that the analog array in the example above uses both byte, and bit mapping. Byte-
mapping is always performed first, then bit-mapping, so beware that a wrongly mapped
bit can overwrite byte-mapped information.

Mapping write commands

The same methods is avaliable for mapping write commands. The byteN and bN parameters
always adresses the database variables and their values in ” ” marks adresses the payload
bit and bytes. The example listing below, show how to create the motor-speed and motor-
reset variables and map the data into the payload bytes:

<cmd type=”reques t ” name=” r e s e t ” cmd=”0 ”>
<v a r i a b l e name=” r e s e t l e f t m o t o r ” d i r=”w”/>

</cmd>
<cmd type=”reques t ” name=”speed ” cmd=”1 ”>

<v a r i a b l e name=”speed l ” d i r=”w” byte0=”0 ”/>
</cmd>

In the example, the variable ”speedl” has it’s lowest byte mapped into the first payload
byte. Note that the reset command does not have any data mapped. This is because there
are no payload bytes in the reset command. But the command will be transmitted to the
bus, if the variable ”resetleftmotor” is updated from the client, no matter what value is
written into it.

Optional parameters

Besides the mapping of variable data, the variables has a few other, optional parameters.

Data can be transmitted in signed form. This creates a problem, when it is transferred into
the 32-bit variable database, as the sign-bit is lost. The parameter signed=”true”, makes it
possible to sign-extend the database variable, to maintain signedness. The listing below
show an example of it’s use:

<array name=”analog ” d i r=”r ”>
<element byte0=”2 ” b8=”0 ,0 ” b9=”1 ,0 ” s igned=”true ”/>
<element byte0=”3 ” b8=”6 ,1 ” b9=”7 ,1 ”/>
<element byte0=”4 ” b8=”4 ,1 ” b9=”5 ,1 ”/>
<element byte0=”5 ” b8=”2 ,1 ” b9=”3 ,1 ”/>
<element byte0=”6 ” b8=”0 ,1 ” b9=”1 ,1 ”/>

</ array>

This listing makes the first element of the analog variable sign-extended. This means, that
the most significant bit (in this case b9) is copied to the bits b10-31 (two’s compliment).

Another optional property, inversion, is made mostly for backward compatibility. As the
motor-setup on the SMR’s are mirrored, each motor is running in opposite directions.
To make programming of the SMR movement intuitive, the right motor speed-command

Anders Billesø Beck (s021786) 20

Robot hardware abstraction layer 4.2 Plug-in modules

and the resulting encoder readings are inverted in the old SMRD enviroment. This gives
the illusion that both motors are running in the same direction. To give this function-
ality, AuSerial has the invert=”true” parameter. The example listing below, show the full
configuration of the right motor controller:
< !−− Right motor module −−>
<dev i ce name=”motorr ” id=”2 ”>

<cmd type=”reques t ” name=” r e s e t ” cmd=”0 ”>
<v a r i a b l e name=”re s e t r i gh tmoto r ” d i r=”w”/>

</cmd>
<cmd type=”reques t ” name=”speed ” cmd=”1 ”>

<v a r i a b l e name=”speedr ” d i r=”w” byte0=”0 ” i n v e r t=”true ”/>
</cmd>
<cmd type=” p o l l ” name=”encrTx ” cmd=”2 ” pad=”5 ”/>
<cmd type=”reques t ” name=”encrRx ” cmd=”A”>

<v a r i a b l e name=”encr ” d i r=”r ” byte0=”1 ” byte1=”0 ” i n v e r t=”true ”/>
<v a r i a b l e name=”pwmr” d i r=”r ” byte0=”3 ” i n v e r t=”true ”/>

</cmd>
</ dev i ce>

Note that all values are inverted on the motor.

4.2.2.4 Final notes on the AuSerial plug-in

AuSerial is by far the most advanced plug-in written for RHD so far. The clear vision was
to create a fully configurable interface, that can provide full support for existing and new
devices on the SMR serial bus. I believe that it has been successfull.

It has been highly focussed, that most advanced code is placed in the initialization phase,
and simplifying the run-time code. Actual run-time code is actually only around 300 lines
of the 1000 lines plug-in.

When the configuration of AuSerial is understood, it is not overwhelmingly difficult. It is,
however intended that it should be using standard configuration files, and only changed
by ”SMR Experts” for new hardware or special projects as Eurobot.

One functional thing is missing. It is not possible to execute the shutdown function, from
status of a variable. In SMRD, the Linux shutdown is executed when bit a (see figure
11) from the power-module is set. The vision of a solution, is a possibility to map any
system command to the status of a variable. This will also provide a useful functionality to
execute system functions, such as audio playback or screen output from external sensors.

4.2.3 GPS plug-in

The first task for the RHD system, was a full implementation on the automated HAKO
tractor at KU Life. The original hardware daemon for this purpose, HAKOD, was written
by Asbjørn Mejnertsen and Anders Reeske Nielsen in 2006. It provided interface for the
specific hardware modules on the HAKO tractor, but wrapped in the SMRD protocol.
That made it possible to re-use most interface code and easily create RHD plug-ins for
the hardware.

Anders Billesø Beck (s021786) 21

Robot hardware abstraction layer 4.2 Plug-in modules

The GPS plug-in was created in combination of using the code from HAKOD and the
GPS server by Lars Mogensen and Christian Andersen, with a slight re-write of the serial
interface. Using these code-bits, the GPS module provides support for standard NMEA
GPS and the RTK GPS, used on the HAKO tractor.

When a standard NMEA GPS is used, koordinates are converted from Lat-Lon to UTM,
using a default UTM Zone, assigned in the configuration file. It is possible to change the
zone using a write-variable.

The configuration of the plug-in is done on in the following piece XML
<gps enable=”true ” l i b=” l i b g p s . so . 1 ” c r i t i c a l=”true ”>

< s e r i a l port=”/dev/rfcomm0 ” baudrate=”4800 ”/>
<utmzone value=”32 ”/>< !−− Defau l t UTM Zone −−>

</gps>

The configuration give the possibility of setting the serial port, baudrate and default UTM
zone. In this example, the port is configured a bluetooth serial NMEA GPS.

The GPS plug-in creates the following database variables:

Variable Dir Variable contents Description
gpstime r [hour][min][sec][ms] Time of day in millisecons resolution
gpsdate r [dd][mm][yyyy] Date in day, month and year
gpstimeofday r [sec][µsec] Linux timeofday in second and µseconds
gpsnorthing r [m][µm] UTM Northing coordinate
gpseasting r [m][µm] UTM Easting coordinate
gpslattitude r [deg][µdeg] Lattitude coordinate (NMEA GPS only)
gpslongitude r [deg][µdeg] Longitude coordinate (NMEA GPS only)
gpsquality r [quality] Quality of GPS fix
gpsfixvalid r [0 / 1] Binary value of valid fix
gpssatused r [sats] Number of sattelites used in the fix
gpsdop r [dop][1/10 of dop] Horizontal dillution of precision
gpsaltitude r [m] GPS Altitude
gpsheigth r [m] GPS Heigth
gpsheading r [deg][mdeg] GPS Heading
gpsspeed r [m/s][mm/s] Speed over ground
gpsegnos r [egnos] Binary EGNOS fix (Unused)
gpsllfixes r [fixes] No. of fixes with lat-long (NMEA GPS)
gpsutmfixes r [fixes] No. of fixes with UTM (RTK GPS)
gpsutmzone r [zone] UTM Zone for lat-long to UTM conversion
gpssetutmzone w [zone] Write variable to set UTM zone

Table 1: Database variables created by the GPS plug-in

4.2.4 Crossbow gyro plug-in

Another device used on the HAKO tractor is the Crossbow IMU400. It is a full fledged
3-axis IMU, providing gyro rates and accelleration on all three axis. As it is based on

Anders Billesø Beck (s021786) 22

Robot hardware abstraction layer 4.2 Plug-in modules

MEMS technology, it does have a small drift on gyro mesurements, but provide pretty
decent performance. The price-tag is arround 15.000 dkk.

The RHD driver is mainly from Asbjørn Mejnertsen and Anders Reeske Nielsen’s HAKOD,
but the Crossbow initialization has been completely rewritten and a lot of busy-wait loops
has been removed. The Crossbow unit available on the tractor does have some freeze
issues with it’s firmware, that can make the initialization fail. It is highly recomended to
use the critical =”true” parameter, if the gyro operation is needed. This way, RHD will not
operate, if the crossbow is not initialized properly.

XML configuration of the Crossbow plug-in is fairly simple:

<crossbow enable=” f a l s e ” l i b=”l ibc ro s sbow . so . 1 ” c r i t i c a l=”true ”>
< s e r i a l port=”/dev/ttyUSB1 ” />

</ crossbow>

When initialized properly, the Crossbow plug-in creates the following variables:

Variable Dir Variable contents Description
xbowroll r [roll] IMU rate of roll
xbowpitch r [pitch] IMU rate of pitch
xbowyaw r [yaw] IMU rate of yaw
xbowx r [accl X] IMU accelleration in X direction
xbowy r [accl Y] IMU accelleration in Y direction
xbowz r [accl Z] IMU accelleration in Z direction
xbowtemp r [temp] IMU Temperature
xbowtime r [time] IMU Time

Table 2: Database variables created by the Crossbow plug-in

Further description of the data, can be found in the IMU400 datasheet.

4.2.5 Fibre Optic Gyro plug-in

When working on their project of ”Fault tolerant navigation for Mobile Robots”, Peter
Tjell and Søren Hansen received a Fibre Optic Gyro (FOG), that was just lying around at
KVL (KU Life). It was promptly interfaced to RHD and intensively used on the HAKO
tractor during their thesis project.

The FOG uses two RS-422 serial busses. One for setup and one for data. Using a clever
cable, it is possible to run the FOG, using only one RS-422 port. This works if the TX
pair is connected to the setup connector input and the RX pair is connected to the data
connector output. This plug-in is written, so that both using two RS-422 ports or just one
RS-422 port is possible. Setup is done at 9600 baud and data communication is done at
57600 baud.

The XML configuration is seen in the listing below:

Anders Billesø Beck (s021786) 23

Robot hardware abstraction layer 4.2 Plug-in modules

<f ogyro enable=”true ” l i b=” l i b f o g y r o . so . 1 ” c r i t i c a l=”true ” >
<d a t a s e r i a l port=”/dev/ttyUSB0 ” baudrate=”57600 ”/>
<c o n f i g s e r i a l port=”/dev/ttyUSB0 ” baudrate=”9600 ”/>
<sampletime value=”10 ”/>< !−− t ime pr sample in ms −−>

</ fogyro>

In the configuration, it is possible to assign serial ports for both configuration and data.
It is also possible to set the time pr. sample, performed by the gyro. See datasheet for
further details.

The FOGyro plug-in creates the following database variables:

Variable Dir Variable contents Description
fogphx r [φx] φX angle
fogphy r [φy] φY angle
fogphdz r [φ∆z] φ∆Z rate. (aka. Yaw rate)
fogtempb r [tempb] Temperature mesurement
fogtempe r [tempe] Temperature mesurement
fogfailstatus r [status] Failure status bits
foggyrostatus r [status] Gyro status bits

Table 3: Database variables created by the FOGyro plug-in

See datasheet for further information regarding the variables

4.2.6 SMRDSerial plug-in

AuSerial was the last developed module for RHD. To have a stabile plug-in for testing, the
main code of SMRD was ported into a RHD plug-in, named SMRDSerial. That made it
possible to control all functions of the SMR, with a very short plug-in development time
and through verified software.

This plug-in was essential to the development and debugging of RHD and is still in use for
”long time verification” of the operation. When AuSerial is properly tested and configured,
SMRDSerial will be declared depreciated.

Configuration of SMRDSerial is done through the following piece of XML:

< !−− SMRD Se r i a l bus module −−>
<smrd enable=”true ” l i b=” l i b s m r d s e r i a l . so . 1 ” c r i t i c a l=”true ”>

<s e r i a l 1 port=”/dev/ ttyS0 ” baudrate=”115200 ”/>
<s e r i a l 2 port=”/dev/ ttyS1 ” baudrate=”115200 ”/>

</smrd>

It is possible to configure both serial ports, for RS-485 (serial1) and optional RS-232 for
the RS-232 linesensor.

SMRDSerial creates the following database variables:

Anders Billesø Beck (s021786) 24

Robot hardware abstraction layer 4.3 librhd Client library

Variable Dir Variable contents Description
encl r [enc] Left encoder value
encr r [enc] Right encoder value
linesensor r [ls1][ls2]...[ls8] 8 Linesensor mesurements
irsensor r [ir1][ir2]...[ir6] 6 Ir sensor mesurements
gyro r [pos1][pos2][pos3] Uncompensated position of the 3 gyros
gyrotemp r [temp1][temp2][temp3] Gyro temperatures
speedl w [speed] Speed command for left motor
speedr w [speed] Speed command for right motor
resetmotorl w [reset] Reset command for left motor
resetmotorr w [reset] Reset command for right motor
steeringangleref w [angle] Steering angle for the Ackerman SMR

Table 4: Database variables created by the SMRDSerial plug-in

4.2.7 Hako CAN-bus plug-in

The HAKO tractor is operated through a CAN-bus interface to the ESX ECU (Engine
Control Unit), that is running a custom control code. Asbjørn Mejnertsen and Anders
Reeske Nielsen wrote a piece of interface code into HAKOD, that has been the foundation
for this plug-in.

HAKOD was never compatible with the Slackware Linux distribution, that is used on the
RSE platform, as it used a Debian CAN-bus driver. Through quite some effort from Nils
A. Andersen and Ole Ravn, it was possible to port the HAKOD code to use the Slackware
CAN-bus driver and a plug-in was developed, that is able to control the HAKO tractor
ECU.

As this plug-in is developed by Nils A. Andersen and not yet re-integrated into the devel-
opment branch of RHD, and will not be described further in this report.

4.3 librhd Client library

For easy client development, RHD is supplied with a client library. The library provides
functions to connect and synchronize to RHD servers, maintaining of the local variable
database and I/O functions to use database data.

Despite that RHD is a real-time server, a client does not need to fullfill any real-time
requirements. RHD will operate fine, servicing a real-time client while also transmitting
data to non real-time ”spectator” clients.

4.3.1 Communicating with the RHD server

The communication API is controlled by three functions:

Anders Billesø Beck (s021786) 25

Robot hardware abstraction layer 4.3 librhd Client library

char rhdConnect (char rw , char ∗host , int port) ;
char rhdSync (void) ;
char rhdDisconnect (void) ;

rhdConnect() establishes connection to a RHD server. It takes three parameters:

rw Set the desired access level. ’w’ requests write access and ’r’ requests read access to
rhd

host Char string holding host name for the RHD server

port Integer holding the TCP port, that RHD is running on

If connection fails, rhdConnect() returns -1, but if connection is successful, it returns
either ’w’ or ’r’, depending on what access level was granted from the RHD server. If one
write client already is connected, rhdConnect() returns ’r’ and is only able to receive data
from RHD.

rhdSync() is the periodic function, that transmits write variables to the RHD server (if
connected as write-client), and waits for read variables from the server. When this function
is called, the thread will block, until a RHD server period is expired and data is exchanged.
This is used to keep real-time synchronization between RHD server and client.

rhdDisconnect() closes the connection to the RHD server and frees memory allocated
for the database.

4.3.2 Communicating with the variable database

Getting variable data in and out of the synchronized variable database can be done in two
ways. The most efficient way is to access the variable symbol table directly. This method
is also the most unsafe, and should only be used if performance is critical, as in MRC.

The API for this access method is

symTableElement∗ getSymbolTable (char rw) ;
int getSymbolTableSize (char rw) ;

Using the function getSymbolTable() will return a pointer to the symbol table array.
Iterating through this array, makes direct data access possible. getSymbolTableSize()
sets the limits for iterating, when searching for variables. The symbol table structure is
described in section 4.1.1 on page 3. Be very careful, when using this method, as there are
no protection against writing outside the symbol table arrays or data-areas. Timestamp
must also be updated manually.

The preferred method is to use the dedicated I/O API. The functions is described below

Anders Billesø Beck (s021786) 26

Robot hardware abstraction layer 4.3 librhd Client library

int getReadValue (int id , int index) ; //Get va lue from read−database
int ∗ getReadArray (int id) ; //Get array po in t e r from read−database
int getWriteValue (int id , int index) ; //Get va lue from wri te−database
int ∗ getWriteArray (int id) ; //Get array po in t e r from wri te−database
int setWriteValue (int id , int index , int value) ; //Write va lue to wri te−database
int setWriteArray (int id , int l ength , int∗ ar raypt r) ; //Write array to wri te−database
char isUpdated (char rw , int id) ; // I s the r/w−database va lue updated
char ∗ getVarName (char rw , int id) ; //Get po in t e r to v a r i a b l e name
int getVarLength (char rw , int id) ; //Get the l e n g t h o f v a r i a b l e data−array

This API will allow full access to the read and write databases, but also provide protection
for writing outside desired memory areas and perform all required book-keeping. The API
is still in development, and might be subject for change. Always check the rhd.h header
and Doxygen documentation for the most recent API. Operations of the API is almost
identical to the variable database API described in section 4.1.1 on page 3.

Anders Billesø Beck (s021786) 27

Robot hardware abstraction layer 5 Testing on various platforms

5 Testing on various platforms

Robot systems can run on a large range of embedded platforms. To ensure full versatility,
RHD has been programmed using full endian-safe code.

To test the flexibility of the system, RHD and MRCs predecessor SMRDEMO was compiled
and tested on two non-x86 platforms. T The requirement was that the platform supported
Linux and the GCC compliler. The systems used for test were

• Atmel ATNGW100 development board with a 130 MHz AVR32 Application proces-
sor and running a custom Linux Buildroot on kernel 2.6.19

• Fujitzu-Siemens Loox 720 PDA with a 520 MHz Intel XScale processor and Debian
Linux 2.6.21

Figure 12: Atmel ATNGW100 development
board

Figure 13: Fujitzu-Siemens Loox 720 PDA

The AVR32 platform was supported by a large toolchain from Atmel, that made it possible
to cross-compile both RHD and MRC into AVR32-binary code.

The Intel XScale is supported by the Debian distribution, and the driver adjustment was
done through an Loox720 open-source project. As the XScale is supported by Debian, all
GNU tools are available for download through the Debian package-manager and compila-
tion was done on the Loox720 itself.

Both software elements was tested individually. The functional test of SMRDEMO, were
done using SMRD as hardware abstraction layer, instead of RHD, as MRC was not fully
developed when the tests were performed. RHD was only tested using the demo client
application.

The results of the is illustrated in table 5 below

Anders Billesø Beck (s021786) 28

Robot hardware abstraction layer 6 Further development

RHD SMRDEMO+SMRD
Compile Test Compile Test

AVR32 Works Works Works Works
Intel XScale Works Works Works Works

Table 5: Test results of compiling and testing RHD and SMRDEMO on AVR32 and XScale
architecture

As seen in table 5, both RHD, and (SMRDEMO + SMRD) worked on both platforms,
without corrections in the code. Only when cross-compiling to the AVR32 platform, it
was necessary to correct makefiles, to use the cross-compiling toolchain.

The conclusion of this test, is that the robot-control platform has now reached a level,
where it allows a very high level of flexibility both in choice of robot hardware and computer
platform.

6 Further development

RHD has now moved to the maturing development phase. The plug-in structure is not
yet implemented, and some minor corrections are still in due process.

The program is now in care of the Robot Systems Engineering (RSE) group and the newest
program version can be found in the RSE SVN repository. Note that SVN development
should follow the guidelines for SVN2, using trunk, branches and tags. The most recent
stable development version is always found within the trunk section.

Updated documentation of RHD is always found in the RSE wiki3, that will provide the
information from this report and any new development information.

2See http://svnbook.red-bean.com/
3RHD can be found at: http://timmy.elektro.dtu.dk/rse/wiki/index.php/RHD

Anders Billesø Beck (s021786) 29

Robot hardware abstraction layer 7 Conclusion

7 Conclusion

The aim of this project, was to review the AU robot control architecture, to identify
and redesign any un-addressed leftovers from single-platform dawn of the architecture.
The largest structural problem was quickly identified as the various hardware abstraction
layers, used on the robots.

Through this project, a new, flexible hardware abstraction layer, the Robot Hardware
Daemon (RHD), was implemented. RHD provides a fully XML configurable interface, and
provides all the basic functionality of realtime scheduling and client-server communication.
Hardware interaction is provided through a plug-in interface, to provide maximal flexibility
and expansibility.

To provide proof-of-concept, plug-ins was programmed for the SMR platform and the
HAKO platform. Both platforms runs exactly the same software, just using different
configuration and plug-ins.

One drawback of changing to a different HAL, was that the robot simulators designed
at AU, now become inoperational. This problem is already now in the process of being
solved, by designing a plug-in for RHD that loads the simulator Stage, provided with the
Player/Stage project. It had been a desire for a long time, to utilize Stage and possibly
the 3D simulator Gazebo and that has been possible using RHD.

RHD must be considered an overall success. The core has proven itself flexible, stable and
providing new functionality throughout the control system, such as dynamic variables.
The plug-in architecture makes it simple to change robot architectures and add new hard-
ware. In close future, another robot will join the family of RHD supported robots, the
iRobot ATRV-Jr and hopefully many more will follow soon.

Anders Billesø Beck
Automation, DTU Electrical Engineering
September 8, 2008

Anders Billesø Beck (s021786) 30

Robot hardware abstraction layer A Example XML Configuration files

A Example XML Configuration files

A.1 RHD configuration XML file for version 1.x

1 <?xml version=”1 .0 ” ?>
2 < !−−
3 Conf i gura t ion f i l e f o r
4 Robot Hardware Daemon
5

6 See something e l s e f o r c on f i g u r a t i on d e s c r i p t i o n
7

8 $ I d : rhdcon f i g .xml 144 2008−05−18 22 :29:25Z andersbeck $
9 −−>

10 <rhd>
11 < !−− ∗∗∗ Core Components Conf i gura t ion ∗∗∗ −−>
12 < !−− Shedu ler c on f i g u ra t i on −−>
13 <shedu l e r>
14 <per iod value=”10000 ”/>< !−−in usec−−>
15 <type value=” i t i m e r ”/>< !−−”us l e ep ” , ” i t i m e r ” , ”LXRT” −−>
16 < r t a i i n i t cmd=”. / i n i t r t a i . sh ”/>< !−− Sc r i p t to i n i t i a l i z e RTAI −−>
17 </ shedu l e r>
18 < !−− Server con f i g u ra t i on −−>
19 <s e r v e r>
20 <port value=”24902 ”/>
21 <c l i e n t s number=”10 ”/>
22 </ s e r v e r>
23 < !−− ∗∗∗ Modules Conf i gura t ion ∗∗∗ −−>
24 < !−− SMRD Se r i a l bus module −−>
25 <smrd enable=”true ”>
26 <s e r i a l 1 port=”/dev/ ttyS0 ” baudrate=”115200 ”/>
27 <s e r i a l 2 port=”/dev/ ttyS1 ” baudrate=”115200 ”/>
28 </smrd>
29 < !−− HAKO Tractor CAN−Bus module −−>
30 <hakocan enable=” f a l s e ”>
31 <cont ro l can port=”/dev/can1 ”/>
32 </hakocan>
33 < !−− Crossbow IMU Conf igura t ion −−>
34 <crossbow enable=” f a l s e ”>
35 < s e r i a l port=”/dev/ttyUSB1 ”/>
36 </ crossbow>
37 < !−− Fibre Optic Gyro module −−>
38 <f ogyro enable=” f a l s e ”>
39 <d a t a s e r i a l port=”/dev/ttyUSB0 ” baudrate=”57600 ”/>
40 <c o n f i g s e r i a l port=”/dev/ttyUSB0 ” baudrate=”9600 ”/>
41 <sampletime value=”10 ”/>< !−− t ime pr sample in ms −−>
42 </ fogyro>
43 < !−− S e r i a l GPS module −−>
44 <gps enable=” f a l s e ”>
45 < s e r i a l port=”/dev/rfcomm0 ” baudrate=”4800 ”/>
46 <utmzone value=”32 ”/>< !−− Defau l t UTM Zone −−>
47 </gps>
48 < !−− Automation s e r i a l bus d r i v e r −−>
49 <a u s e r i a l enable=” f a l s e ”>
50 <bus name=”RS485 ” dev=”/dev/ ttyS0 ” baudrate=”115200 ” h o l d o f f=”6 ”>
51 < !−− Linesensor module −−>
52 <dev i ce name=” l i n e s e n s o r ” id=”7 ”>
53 <cmd type=” p o l l ” name=”va lues ” cmd=”1 ” pad=”10 ”>
54 <array name=” l i n e s e n s o r ” d i r=”r ”>
55 <element byte0=”0 ”/>

Anders Billesø Beck (s021786) A

Robot hardware abstraction layer A.1 RHD configuration XML file for version 1.x

56 <element b0=”0 ,1 ” b1=”1 ,1 ” b2=”2 ,1 ” b3=”3 ,1 ” b4=”4 ,1 ” b5=”5 ,1 ” b6=”6 ,1 ” b7=”7 ,1 ”/>
57 <element byte0=”2 ”/>
58 <element byte0=”3 ”/>
59 <element byte0=”4 ”/>
60 <element byte0=”5 ”/>
61 <element byte0=”6 ”/>
62 <element byte0=”7 ”/>
63 </ array>
64 </cmd>
65 <cmd type=”reques t ” name=” i d s t r i n g ” cmd=”9 ” pad=”10 ”>
66 <v a r i a b l e name=” i d s t r i n g ” d i r=”r ” byte0=”0 ”/>
67 </cmd>
68 </ dev i ce>
69 < !−− Le f t motor module −−>
70 <dev i ce name=”motorl ” id=”1 ”>
71 <cmd type=”reques t ” name=” r e s e t ” cmd=”0 ”/>
72 <cmd type=”reques t ” name=”speed ” cmd=”1 ”>
73 <v a r i a b l e name=”speed l ” d i r=”w” byte0=”0 ”/>
74 </cmd>
75 <cmd type=” p o l l ” name=”enclTx ” cmd=”2 ” pad=”5 ” per iod=”2 ”/>
76 <cmd type=”reques t ” name=”enclRx ” cmd=”A”>
77 <v a r i a b l e name=”enc l ” d i r=”r ” byte0=”1 ” byte1=”0 ”/>
78 <v a r i a b l e name=”pwml” d i r=”r ” byte0=”3 ”/>
79 </cmd>
80 </ dev i ce>
81 < !−− Right motor module −−>
82 <dev i ce name=”motorr ” id=”2 ”>
83 <cmd type=”reques t ” name=” r e s e t ” cmd=”0 ”/>
84 <cmd type=”reques t ” name=”speed ” cmd=”1 ”>
85 <v a r i a b l e name=”speedr ” d i r=”w” byte0=”0 ”/>
86 </cmd>
87 <cmd type=” p o l l ” name=”encrTx ” cmd=”2 ” pad=”5 ”/>
88 <cmd type=”reques t ” name=”encrRx ” cmd=”A”>
89 <v a r i a b l e name=”encr ” d i r=”r ” byte0=”1 ” byte1=”0 ”/>>
90 <v a r i a b l e name=”pwmr” d i r=”r ” byte0=”3 ”/>
91 </cmd>
92 </ dev i ce>
93 < !−− IR sensor module −−>
94 <dev i ce name=” i r s e n s o r ” id=”8 ”>
95 <cmd type=” p o l l ” name=”d i s t a n c e s ” cmd=”8 ” per iod=”10 ”>
96 <array name=” i r d i s t ” d i r=”r ”>
97 <element byte0=”0 ”/>
98 <element byte0=”1 ”/>
99 <element byte0=”2 ”/>

100 <element byte0=”3 ”/>
101 <element byte0=”4 ”/>
102 <element byte0=”5 ”/>
103 </ array>
104 </cmd>
105 </ dev i ce>
106 < !−− Power supp ly module −−>
107 <dev i ce name=”power ” id=”9 ”>
108 <cmd type=” p o l l ” name=”s t a t u s ” cmd=”1 ” pad=”10 ”>
109 <array name=” d i g i t a l ” d i r=”r ”>
110 <element b0=”2 ,0 ”/>
111 <element b0=”3 ,0 ”/>
112 <element b0=”4 ,0 ”/>
113 <element b0=”5 ,0 ”/>
114 <element b0=”6 ,0 ”/>
115 <element b0=”7 ,0 ”/>
116 </ array>

Anders Billesø Beck (s021786) B

Robot hardware abstraction layer A.1 RHD configuration XML file for version 1.x

117 <array name=”analog ” d i r=”r ”>
118 <element byte0=”2 ” b8=”0 ,0 ” b9=”1 ,0 ”/>
119 <element byte0=”3 ” b8=”6 ,1 ” b9=”7 ,1 ”/>
120 <element byte0=”4 ” b8=”4 ,1 ” b9=”5 ,1 ”/>
121 <element byte0=”5 ” b8=”2 ,1 ” b9=”3 ,1 ”/>
122 <element byte0=”6 ” b8=”0 ,1 ” b9=”1 ,1 ”/>
123 </ array>
124 </cmd>
125 </ dev i ce>
126 </bus>
127 </ a u s e r i a l>
128 </rhd>

Anders Billesø Beck (s021786) C

Robot hardware abstraction layer A.2 RHD configuration XML file for version 2.x

A.2 RHD configuration XML file for version 2.x

1 <?xml version=”1 .0 ” ?>
2 < !−−
3 Conf i gura t ion f i l e f o r
4 Robot Hardware Daemon
5

6 See something e l s e f o r c on f i g u r a t i on d e s c r i p t i o n
7

8 $ I d : rhdcon f i g .xml 144 2008−05−18 22 :29:25Z andersbeck $
9 −−>

10 <rhd>
11 < !−− ∗∗∗ Core Components Conf i gura t ion ∗∗∗ −−>
12 < !−− Shedu ler c on f i g u ra t i on −−>
13 <shedu l e r>
14 <per iod value=”10000 ”/>< !−−in usec−−>
15 <type value=” i t i m e r ”/>< !−−”us l e ep ” , ” i t i m e r ” , ”LXRT” −−>
16 < r t a i i n i t cmd=”. / i n i t r t a i . sh ”/>< !−− Sc r i p t to i n i t i a l i z e RTAI −−>
17 </ shedu l e r>
18 < !−− Server con f i g u ra t i on −−>
19 <s e r v e r>
20 <port value=”24902 ”/>
21 <c l i e n t s number=”10 ”/>
22 </ s e r v e r>
23 < !−− ∗∗∗ Modules Conf i gura t ion ∗∗∗ −−>
24 <p lug in s basepath=”rhd/ ”>
25 < !−− SMRD Se r i a l bus module −−>
26 <smrd enable=”true ” l i b=” l i b s m r d s e r i a l . so . 1 ” c r i t i c a l=”true ”>
27 <s e r i a l 1 port=”/dev/ ttyS0 ” baudrate=”115200 ”/>
28 <s e r i a l 2 port=”/dev/ ttyS1 ” baudrate=”115200 ”/>
29 </smrd>
30 < !−− HAKO Tractor CAN−Bus module −−>
31 <hakocan enable=” f a l s e ”>
32 <cont ro l can port=”/dev/can1 ”/>
33 </hakocan>
34 < !−− Crossbow IMU Conf igura t ion −−>
35 <crossbow enable=” f a l s e ” l i b=”l ibc ro s sbow . so . 1 ” c r i t i c a l=”true ”>
36 < s e r i a l port=”/dev/ttyUSB1 ”/>
37 </ crossbow>
38 < !−− Fibre Optic Gyro module −−>
39 <f ogyro enable=”true ” l i b=” l i b f o g y r o . so . 1 ” c r i t i c a l=”true ” >
40 <d a t a s e r i a l port=”/dev/ttyUSB0 ” baudrate=”57600 ”/>
41 <c o n f i g s e r i a l port=”/dev/ttyUSB0 ” baudrate=”9600 ”/>
42 <sampletime value=”10 ”/>< !−− t ime pr sample in ms −−>
43 </ fogyro>
44 < !−− S e r i a l GPS module −−>
45 <gps enable=”true ” l i b=” l i b g p s . so . 1 ” c r i t i c a l=”true ”>>
46 < s e r i a l port=”/dev/rfcomm0 ” baudrate=”4800 ”/>
47 <utmzone value=”32 ”/>< !−− Defau l t UTM Zone −−>
48 </gps>
49 < !−− Automation s e r i a l bus d r i v e r −−>
50 <a u s e r i a l enable=”true ” l i b=” l i b a u s e r i a l . so . 1 ” c r i t i c a l=”true ”>
51 <bus name=”RS485 ” dev=”/dev/ ttyS0 ” baudrate=”115200 ” h o l d o f f=”6 ”>
52 < !−− Linesensor module −−>
53 <dev i ce name=” l i n e s e n s o r ” id=”7 ”>
54 <cmd type=” p o l l ” name=”va lues ” cmd=”1 ” pad=”10 ”>
55 <array name=” l i n e s e n s o r ” d i r=”r ”>
56 <element byte0=”0 ”/>
57 <element b0=”0 ,1 ” b1=”1 ,1 ” b2=”2 ,1 ” b3=”3 ,1 ” b4=”4 ,1 ” b5=”5 ,1 ” b6=”6 ,1 ” b7=”7 ,1 ”/>
58 <element byte0=”2 ”/>
59 <element byte0=”3 ”/>

Anders Billesø Beck (s021786) D

Robot hardware abstraction layer A.2 RHD configuration XML file for version 2.x

60 <element byte0=”4 ”/>
61 <element byte0=”5 ”/>
62 <element byte0=”6 ”/>
63 <element byte0=”7 ”/>
64 </ array>
65 </cmd>
66 <cmd type=”reques t ” name=” i d s t r i n g ” cmd=”9 ” pad=”10 ”>
67 <v a r i a b l e name=” i d s t r i n g ” d i r=”r ” byte0=”0 ”/>
68 </cmd>
69 </ dev i ce>
70 < !−− Le f t motor module −−>
71 <dev i ce name=”motorl ” id=”1 ”>
72 <cmd type=”reques t ” name=” r e s e t ” cmd=”0 ”/>
73 <cmd type=”reques t ” name=”speed ” cmd=”1 ”>
74 <v a r i a b l e name=”speed l ” d i r=”w” byte0=”0 ”/>
75 </cmd>
76 <cmd type=” p o l l ” name=”enclTx ” cmd=”2 ” pad=”5 ” per iod=”2 ”/>
77 <cmd type=”reques t ” name=”enclRx ” cmd=”A”>
78 <v a r i a b l e name=”enc l ” d i r=”r ” byte0=”1 ” byte1=”0 ”/>
79 <v a r i a b l e name=”pwml” d i r=”r ” byte0=”3 ”/>
80 </cmd>
81 </ dev i ce>
82 < !−− Right motor module −−>
83 <dev i ce name=”motorr ” id=”2 ”>
84 <cmd type=”reques t ” name=” r e s e t ” cmd=”0 ”/>
85 <cmd type=”reques t ” name=”speed ” cmd=”1 ”>
86 <v a r i a b l e name=”speedr ” d i r=”w” byte0=”0 ”/>
87 </cmd>
88 <cmd type=” p o l l ” name=”encrTx ” cmd=”2 ” pad=”5 ”/>
89 <cmd type=”reques t ” name=”encrRx ” cmd=”A”>
90 <v a r i a b l e name=”encr ” d i r=”r ” byte0=”1 ” byte1=”0 ”/>>
91 <v a r i a b l e name=”pwmr” d i r=”r ” byte0=”3 ”/>
92 </cmd>
93 </ dev i ce>
94 < !−− IR sensor module −−>
95 <dev i ce name=” i r s e n s o r ” id=”8 ”>
96 <cmd type=” p o l l ” name=”d i s t a n c e s ” cmd=”8 ” per iod=”10 ”>
97 <array name=” i r d i s t ” d i r=”r ”>
98 <element byte0=”0 ”/>
99 <element byte0=”1 ”/>

100 <element byte0=”2 ”/>
101 <element byte0=”3 ”/>
102 <element byte0=”4 ”/>
103 <element byte0=”5 ”/>
104 </ array>
105 </cmd>
106 </ dev i ce>
107 < !−− Power supp ly module −−>
108 <dev i ce name=”power ” id=”9 ”>
109 <cmd type=” p o l l ” name=”s t a t u s ” cmd=”1 ” pad=”10 ”>
110 <array name=” d i g i t a l ” d i r=”r ”>
111 <element b0=”2 ,0 ”/>
112 <element b0=”3 ,0 ”/>
113 <element b0=”4 ,0 ”/>
114 <element b0=”5 ,0 ”/>
115 <element b0=”6 ,0 ”/>
116 <element b0=”7 ,0 ”/>
117 </ array>
118 <array name=”analog ” d i r=”r ”>
119 <element byte0=”2 ” b8=”0 ,0 ” b9=”1 ,0 ”/>
120 <element byte0=”3 ” b8=”6 ,1 ” b9=”7 ,1 ”/>

Anders Billesø Beck (s021786) E

Robot hardware abstraction layer A.2 RHD configuration XML file for version 2.x

121 <element byte0=”4 ” b8=”4 ,1 ” b9=”5 ,1 ”/>
122 <element byte0=”5 ” b8=”2 ,1 ” b9=”3 ,1 ”/>
123 <element byte0=”6 ” b8=”0 ,1 ” b9=”1 ,1 ”/>
124 </ array>
125 </cmd>
126 </ dev i ce>
127 </bus>
128 </ a u s e r i a l>
129 </ p lug in s>
130 </rhd>

Anders Billesø Beck (s021786) F

	Abstract
	Preface
	Introduction
	Robot Hardware Daemon, RHD
	Core Components
	Variable Database
	TCP/IP Server
	Client / Server handshake
	Client / Server dynamic data exchange
	XML Configuration of the server

	Realtime Scheduler
	Linux Scheduling
	RTAI Scheduling
	Open loop sheduling
	XML Configuration of the scheduler

	Plug-in modules
	RHD Plug-in structure
	Plugin library interface
	Compiling a plug-in
	Plug-in XML configuration

	AuSerial plug-in
	SMR serial protocol
	Configuring busses, devices and commands in XML
	Associating database variables to AuSerial commands
	Final notes on the AuSerial plug-in

	GPS plug-in
	Crossbow gyro plug-in
	Fibre Optic Gyro plug-in
	SMRDSerial plug-in
	Hako CAN-bus plug-in

	librhd Client library
	Communicating with the RHD server
	Communicating with the variable database

	Testing on various platforms
	Further development
	Conclusion
	Appendix
	Example XML Configuration files
	RHD configuration XML file for version 1.x
	RHD configuration XML file for version 2.x

